INTERNATIONAL JOURNAL OF MODELING AND SIMULATION FOR THE PETROLEUM INDUSTRY, VOL. 2, NO. 1, FEBRUARY 2008 35

Dynamic Interface for Multi-physics Simulators

César Oliveira!, Fernando Rocha', Renata Medeiros', Ricardo Lima®, Sérgio Soares', Félix Santos?,
and Ismael H. F. Santos?

!Department of Systems and Computing
University of Pernambuco

2Federal University of Pernambuco
Department of Mechanical Engineering
Rua Académico Hélio Ramos, s/n - Recife - PE 50740-530 - Brazil

2CENPES Petrobris, Rio de Janeiro, RJ

{cesar.lins, rfernandoafr, renatawm}@gmail.com, {ricardo, sergio}@dsc.upe.br,

flxcgs@yahoo.com.br,

Abstract—Simulation is a well known technique to study
complex systems. However, the implementation of a simulator
may be more complex than the simulation itself. For instance,
graphical user interface (GUI) development might consume
around 50% of the software development time. Therefore,
strategies and techniques to reduce costs in the development
of GUI are mandatory in modern software engineering. In this
paper we present a framework called GUI Generation Tool that
dynamically constructs user interfaces based on specifications
defined in XML files. This framework was defined to support
automatic generation of simulators for multi-physics phenomena
using software reuse techniques and software product lines
concepts.

Index Terms—GUI Generation, Dynamic Interface

I. INTRODUCTION

Two main concerns are common in complex systems de-
velopment: 1) reducing costs; 2) improving safety. Hence,
designers must analyze the system to understand different
aspects involved in its implementation. Simulation is a well
known technique to study complex systems. However, in
some cases the implementation of the simulator may be more
complex than the simulation itself. Thus, defining strategies
and techniques to automate as much as possible the generation
of simulators is very important.

MPhyScaS (Multi-Physics Multi-Scale Solver Environment)
is a work in progress to define an environment for automating
the development of simulators based on the finite element
method. The term multi-physics can be defined as a qualifier
for a set of interacting phenomena, in space and time. These
phenomena represent deformation of solids, heat transfer,
electromagnetic fields, etc.

MPhyScaS adopts software reuse techniques and software
product lines concepts to partially automate the generation of
multi-physics simulators. In particular, MPhyScaS will reuse
tested software components to assemble the core of multi-
physics simulators. It is possible that components have the
same functionality, however, executing in a different way.
This allows better flexibility, since the user can select which

ismaelh@petrobras.com.br

components to use, modifying the characteristics of the simu-
lation. Such components might require different user data and
therefore their own graphical user interface.

In order to better support the automatic generation of differ-
ent simulators, also increasing development productivity, we
present a framework for dynamically generating user interfaces
for simulators generated by MPhyScaS. The framework is
called GUI Generation Tool.

The structure of this paper is as follows. Section II presents
MPhyScas and its architecture. The software product line
concept is presented in Section III. Section IV presents the
automatic graphical user interface generation tool and Section
V describes the dynamical interface for the MPhyScas simu-
lators. Finally, S ections VI and VII present related work and
conclusions.

II. MPHYSCAS

MPhyScas (Multi-Physics Multi-Scale Solver Environment)
is an environment dedicated to the automatic development of
simulators based on the finite element method. The term multi-
physics can be defined as a qualifier for a set of interacting
phenomena, in space and time. These phenomena are usu-
ally of different natures (deformation of solids, heat transfer,
electromagnetic fields, etc.) and may be defined in different
scales of behavior (macro and micro mechanical behavior of
materials). A multi-physics system is also called a system of
coupled phenomena. If two phenomena are coupled, it means
that part of one phenomenon’s data depends on information
from other phenomenon. Such a dependence may occur in any
geometric part, where both phenomena are defined. Other type
of data dependence is the case where two or more phenomena
are defined on the same geometric component and share the
geometric mesh. Multi-physics and multi-scale problems are
difficult to simulate and the building of simulators for them
tend to be very demanding in terms of time spent in the
programming of the code. The main reason is the lack of
reusability. A detailed discussion can be found in (colocar
Referencia).

36 INTERNATIONAL JOURNAL OF MODELING AND SIMULATION FOR THE PETROLEUM INDUSTRY, VOL. 2, NO. 1, FEBRUARY 2008

Usually, simulators based on the finite element method can
be cast in an architecture of layers. In the top layer global
iterative loops (for time stepping, model adaptation and artic-
ulation of several blocks of solution algorithms) can be found.
This corresponds to the overall scenery of the simulation. The
second layer contains what is called the solution algorithms.
Each solution algorithm dictates the way linear systems are
built and solved. It also defines the type of all operations
involving matrices, vectors and scalars, and the moment when
they have to be performed. The third layer contains the solvers
for linear systems and all the machinery for operating with
matrices and vectors. This layer is the place where all global
matrices, vectors and scalars are located. The last layer is the
phenomenon layer, which is responsible for computing local
matrices and vectors at the finite element level and assembling
them into global data structures.

The definition of those layers is important in the sense of
software modularization. But it does not indicate neither how
entities belonging to different layers interact nor what data
they share or depend upon. That is certainly very important
for the definition of abstractions, which could standardize
the way those layers behave and interact. The architecture
of MPhyScas presents a language of patterns in order to
define and represent not only a set of entities in each layer -
providing the needed layer functionalities - but also the transfer
of data and services between the layers. Thus, MPhyScas is
a framework that binds together a number of computational
entities, which were defined based on that language of patterns,
forming a simulator. Such a simulator can easily be reconfig-
ured in order to change solution methods or other types of
behavior (colocar referencias sobre MPhyScas). Almost every
single piece of code that constitute MPhyScas computational
entities in a simulator can be reused in the building of other
different simulators. This makes the simulators produced by
MPhyScas strongly flexible, adaptable and maintainable.

A. MPhyScaS’s Architecture

The architecture of MPhyScas-S was proposed in [1].
This architecture establishes a computational representation
for the computational layers using patterns (see Figure 1),
where, the Kernel Level represents the global scenery level,
the level of the solution algorithms is represented by the Block
Level, the level of solvers is represented by the Group Level
and the phenomena level is represented by the Phenomenon
Level. The definition of this structure is aimed at improving
the quality of simulators designs. The defined architecture
attempts to fill in the existing gap in the development of FEM
simulators for multi-physics and multi-scales problems. The
main requirements of this architecture are:

« Flexibility in the development of simulators;

« Extensibility of simulators through the integration of
components;

« Improved reusability of processes, data and models.

The architecture of MPhyScas is shown in Figure 2. The
Static Library allows the maintenance of data employed in
the building of simulators and simulations. Those data in-
cludes: methods (mesh generation, numerical integration, for

Global iterative loops Kernel

Articulation of solvers Block

Solvers -_> Group
Phenomena Phenomenon

Fig. 1. Computational representation for the layers of the simulator

instance), functions (constitutive parameters, for instance),
algorithms and phenomena. The Pre-Processor produces Data
for Simulation and builds the Simulator using the Static
Library. The Data for Simulation represent the input data in
a simulation, which are used by the Simulator. The Simulator
is responsible for the execution of a simulation. The Simulator
uses the Data for Simulation and produces the Results of the
Simulation. The Viewer uses the Results of the Simulation
and the Data for Simulation to produce the visualization of
the simulation results.

1 1 1
Pre- Builds Simulator | Produces |Results of the
Processor [— T — — — —> Simulation
| AR | /l\
- Produces
Uses I £ :Uses | Uses
v IS l
1] 1
Static Library| Data for) Viewer
Simulation [~~~]
Uses

Fig. 2. Architecture of the MPhyScas

The Simulator is structured as a tree, divided into four

layers:

« Kernel: it is responsible for initialization procedures
(transferred to Blocks in the lower level); for global time
loops and iterations; for global adaptive iterations and for
articulation of activities to be executed by the Blocks in
the lower level. The Kernel stores system data related to
the parameters for its loops and iterations;

« Block: it is responsible for the transfer of incoming
demands from the Kernel to its Groups in the lower level
(initialization procedures, for instance); for Block local
time loops and iterations (inner loops and iterations inside
a global time step, restricted to groups of phenomena);
for procedures inside time stepping schemes; for Block
local iterations (restricted to some groups of phenomena,
like in a Newton-Raphson iteration, for instance); for
Block local adaptive iterations (restricted to some groups
of phenomena); for operations with global quantities
(transferred to Groups in the lower level, which are the
owners of global quantities). The Blocks serve the Kernel
level. Each Block is responsible for a certain number
of Groups, which can not be owned by other Block.
All demands from a Block to the lower level should be
addressed to its Groups. The Blocks store system data

OLIVEIRA et al.: TOWARDS THE AUTOMATIC DEVELOPMENT OF SIMULATORS ... 37

related to parameters for their own loops and iterations
and parameters for their procedures;

¢ Group: it is responsible for the transfer of incoming
demands from its Block to Phenomena in the lower
level (initialization procedures, for instance); for the
assembling coordination and solution of systems of linear
algebraic equations (the method used depends on the
solver component); for operations with global quantities
(by demand from its Block), for articulation of activities
to be executed by its Phenomena in the lower level
(basically concerned with computation and assembling of
global matrices and vectors). The Groups serve their re-
spective Blocks. Each Group is responsible for a certain
number of Phenomena, which can not be owned by other
Group. All demands from a Group to the lower level
should be addressed to its Phenomena only. The Groups
store global matrices, vectors and scalars and store the
GroupTasks, which are objects encapsulating standard
procedures, where articulation of the Group’s Phenom-
ena are needed. The GroupTasks are programmable and
their data are standard pieces of information, depending
only on the type of the GroupTask.

« Phenomenon: it is responsible for the computation of
local matrices, vectors and scalars (Phenomenon quan-
tities); for operations involving matrices and vectors at
the finite element level and their assembling into given
global matrices and vectors. The Phenomena serve their
respective Groups. The Phenomena store data related
to constitutive parameters or other parameters, which are
specific of the respective Phenomenon; store the geometry
where the respective Phenomenon is defined (different
Phenomena may share a geometry or a part of it);
store WeakForms, which are tools for computing and
assembling quantities defined on a certain part of the
geometry. A WeakForm may be active or not. Only
active WeakForms can be used during a simulation. A
WeakForm may store parameters, which are related to
specific simulation data (for instance, functions for the
definition of boundary conditions or parameters needed
for the computation of a quantity, which should be given
together within a simulation data set). The Phenomenon
should store methods, which are tools to be used in
certain Phenomenon specific tasks. For instance, those
tasks can be generation of geometric and Phenomenon
meshes, numerical integration at the element level, shape
functions, etc.

The simulation starts with the execution of the root of the
Kernel, which uses services provided by a set of Blocks,
which in turn uses services from a set of Groups. Each
Group owns a set of Phenomenon objects, which are used
to perform the production of local matrices and vectors and
the assembling of them into given (by the Group) global
matrices and vectors. Observe that the Kernel may articulate
several Blocks; each Block may articulate several Groups;
each Group may articulate several Phenomenons and each
Phenomenon is able of computing an assembling several local
quantities (scalars, vectors or matrices), as it can be seen in
Figure 4.

Simulator

W
Phenomena Groups Blocks Kemel
it Jeaein T
@D <> 7 —
lj_lj e —— e—— 453 < —
—= | = Sl ==
Fig. 3. Simulator diagram
Kernel
Block 1

Block 2 :

Group1 | Group2 Group 3
. Each Phenomenon

. computes a set of

PhiPhz Fha FBhabh 55 . Quantities during the
““) . simulation (local
/ l \ \ . matrices and vectors)
Y 9, ‘
q q21 | q q q51
12 q22 L s2 41 q52
A3 33
Fig. 4. Each Phenomenon object is able of computing a set of quantities

during a simulation

The states that define the configuration of each Phe-
nomenon object are stored in the respective Group object,
where solvers are located. This is convenient due to the fact
that the Group’s layer is responsible not only to assemble
and solve algebraic systems, but also to operate with scalars,
vectors and matrices in response to requests from a Block (see
Figure 5.

All States are located Keme :
inthe Grouplevel | oo |
(global matrices and Block 1 Block2
vectors)

_ Group1 | Group2 | Group3

"""" Phenomena
Global States
Fig. 5. Each Phenomenon object has its own set of states, which is stored

in its Group object

A quantity that a Phenomenon object can compute and
assemble may be coupled to other Phenomenon’s states (one
or more) as it is depicted in 6. MPhyScas-S provides all the
machinery to make this procedure automatized following the
specification of some data related to the place where coupling
occur, handlers for the states and a reference to the coupled
Phenomenon object, which should be given to the object
responsible for the computation.

38 INTERNATIONAL JOURNAL OF MODELING AND SIMULATION FOR THE PETROLEUM INDUSTRY, VOL. 2, NO. 1, FEBRUARY 2008

Kernel

Block 1 Block 2

Group1 Group2 Group3
Ph1Ph2 Ph3 Ph4Ph5b
I i SEEFTEPTRS T » S

Quantities can be coupled to
Global States

Fig. 6. A quantity computed by a Phenomenon object may be coupled to a
state from other Phenomenon object

For further detailed information on MPhyScas see [2].

III. SOFTWARE PRODUCT LINES

Software reuse is a debated topic in Software Engineering
research. This technique attempts to reduce redundant effort
by reusing components that were developed for other similar
products [3]. To take relevant advantages from this idea, the
development must be planned and executed in a way that
emphasizes a reuse politics.

In this connection, the concept of Software Product Lines
(SPL) [4] was introduced. It defines an environment in which
systems with similar characteristics are produced by assem-
bling assets previously developed. The idea is based in the
fact that few products are really unique. Anything new that
is necessary for a product is created under a reuse policy and
can be reused in the future for assembling other products.

An SPL can be described by four basic concepts: (i)
reusable software assets management, which identifies and
registers reusable assets produced during the development.
Examples of assets are requirements, software components,
test cases and documentation; (ii) model decision, which
defines the structure of the final product based in similarities
and variation points; (iii) production mechanism, which is
responsible for supporting the assembling of software assets,
using the model decision, and for generating the output
product; and (iv) product output, which is the set of final
products of the SPL. Figure 7 illustrates this process.

Product Decisions

Software Asset Inputs Software Product

~, Outputs

Fig. 7. Process of a Software Product Line

According to Griss [5], an SPL is a group of products
that share some common items, but also has some significant
variations. The main goal of an SPL is reducing costs related
to the development and maintenance of common domain

software. In an scientific simulation domain, many elements
are repetitive, like mathematical methods and structures. New
algorithms that are designed for one simulator are likely to
be useful for other related simulators. In this context, a reuse
politics is of great value.

The MPhyScaS environment supports the SPL approach to
minimize the development and maintenance costs of multi-
physics simulators. It defines a modular architecture to which
scientific components can be connected for creating different
purpose simulators. In addition, it provides a repository of
components and a tool for automatically assembling the final
products.

IV. GUI GENERATION

The definition of Graphical User Interfaces (GUI) is an
important aspect of software quality. It has a direct effect on
the user productivity.

Usually, the GUI consumes in average 50% of the system
development time [6]. Thus, the adoption of strategies and
techniques to reduce costs in the development of GUI is
mandatory in modern software engineering.

In a Software Product Line (SPL) [4] environment, this
effort needs to be addressed with great care. Each component
integrated in an SPL may need a specific GUL. However,
implementing every interface from the scratch has a significant
impact in the cost of products.

In an SPL environment, the similarity between the products
allows reusing solutions already developed for other products.
When implementing for SPL, attention must be given to the
commonness and the differences between each product. The
differences are identified as variation points.

A. GUI Generation Tool

The approach proposed by Liborio et al. [7] defines three
phases to automatically generate GUL In the first phase, the
interface definition is guided by the tasks that users will
perform through the GUI. In the second phase, the user task
models are translated into an abstract representation of the
GUI. The final phase transforms the abstract model into the
concrete GUI.

This work proposes a GUI generator for MPhyScaS [8].
The generator is implemented as a framework called GUI
Generation Tool. It is divided in two modules: the Creator
and the Builder.

We adopt the approach defined by Liborio et al. Hence, the
tasks models are represented by the set of parameters that the
user must provide to each component. These parameters are
defined in a graphical interface that corresponds to the Creator
module. They are then mapped into an XML (eXtensible
Markup Language) representation. After that, the XML is
read by the Builder module, which constructs the interface.
This process occurs in two steps: component registration and
interface instantiation. Each component in the MPhyScaS
repository must be registered before its inclusion into a simula-
tor. During registration, the GUI Creator interface is displayed
to the user for defining its parameters. After that, an XML file
with this definition is created. This corresponds to the first step.

OLIVEIRA et al.: TOWARDS THE AUTOMATIC DEVELOPMENT OF SIMULATORS ... 39

An XML file is generated for each component in the simu-
lator. GUI Builder manages the dependence relation between
components. Thus, if the user accesses a feature that requires
a component, the GUI Builder reads the corresponding XML
file and generates the interface to configure the component
parameters. This corresponds to the second step.

Creator
Module

N

Component

Components
Repository

Fig. 8. Architecture of Module Creator

Easy integration with other system is an important require-
ment of the GUI Generator tool. In particular, its integration
with the MPhyScaS can be observed in two points: the
simulator generator uses the Creator module; while the Builder
module composes all the simulators generated by MPhyScaS.
The architecture of both modules is illustrated in Figures 8
and 9.

Components
Repository

>

N

Component

>

Builder
Module

\

Y

executable
simulator

Fig. 9. Architecture of Module Builder

The Builder also validates the values inserted by the user.
The set of valid data are described through value constraints

TABLE 1
CONSTRAINTS OF THE GUI GENERATOR

| Type | Implication |
NUMBER The value is a number
POSITIVE The value allows positive numbers (needs the
number constraint)
NEGATIVE The value allows negative numbers (needs the
number constraint)
ZERO The value allows the zero value (needs the
number constraint)
MAX_VALUE | The value has to be less than the value of this
constraint (needs the number constraint)
MIN_VALUE The value has to be greater than the value of
this constraint (needs the number constraint)
REAL The value is a Real number (needs the number
constraint)
INTEGER The value is a Integer number (needs the num-
ber constraint)
STRING The value is a text
EMPTY The parameter allows empty value

in the XML description. The tool presents an error message
if the user inserts an invalid value.

When a parameter value is changed by the user, the frame-
work notifies the application, allowing it to update the models
accordingly.

B. Format of the Component Description File

The XML file used to describe component parameters is
structured as shown in Figure 10.

Parameters

Parameter
+> id
= name
> type
=+ default

Description

Constraints

Fig. 10. Component structure

The root element is the Parameters structure. It contains
a set of Parameter elements. Parameters are identified by an
attribute id and a name. This name is intended to be presented
to the user in the generated interface. The attribute fype is
required to classify the GUI according to the following class
of interface:
o Selection: the user must choose a value from a list of
values;
o Checklist: the user can chose many options in a list;
« File: a file name and path must be provided by the user;
o Prioritized List: the user has a list of values and can
change the order of the items;
o Check Box:a conventional yes or no check box;
o Text: any textual parameter, including numbers.
Optionally, a default value can be assigned to the parameter
by setting the attribute default.
The Parameter contains an element Description, to
provide a textual description and an element Constraints.

40 INTERNATIONAL JOURNAL OF MODELING AND SIMULATION FOR THE PETROLEUM INDUSTRY, VOL. 2, NO. 1, FEBRUARY 2008

Murnber Parameter 5

FileParameter | Search... i

SelectionParameter

Fig. 11. Example of generated interface

Number Parameter 2

E@j} Thiz number 5

FileParameter | search.. |

SelectionParameter

A

Fig. 12. Example of error message displayed by the generated GUI

Such Constraints are required to validate the data
entered by the user in the interface. Examples of constraints
are the range within a numeric parameter, the accepted file
extension, or the size of a text parameter.

The constraints supported by the GUI Generator are de-
scribed in Table 1.

C. Example of Generated GUI

The interface is generated by instantiating SWT widgets
according to the parameter description. Figure 11 shows an
interface created through the GUI Generator Tool. Such an in-
terface corresponds to the GUI defined by the XML presented
bellow. The example illustrates three types of parameters: Text
(with number constraint), File, and Selection.

When the user inputs an invalid value into a data filed, the
interface displayes an error message. This is exemplified in
Figure 12.

1 <?xml version="1.0" encoding="UTF-8"7>

2 <parameters>

3 <param id="0" name="Number_.Parameter” type="NUMBER
” default="5" description="">

4 <constraints>

5 <positiveConstraint />

6 <integerConstraint />

7 </constraints>

3 </param>

9 <param id="1" name="FileParameter” type="FILE”
default="MS_.Word_$_*.doc” description="">

10 <constraints />

11 </param>

12 <param id="2" name="SelectionParameter” type="
SELECTION” default="" description="">

13 <constraints>
14 <selectionConstraint value="v1_#_.v2_#._.v3" />
15 </constraints>

16 </param>
17 </parameters>

V. MPHYSCAS DYNAMIC INTERFACES

The MPhyScaS simulation interface supports a great variety
of simulators for many purposes. These simulators share the

same layer structure presented in Section IV, but may differ
regarding the number and types of phenomenon, solution al-
gorithm, numeric methods, mesh generators and others. Thus,
the data manipulated by each simulator is usually different.
Therefore, creating a new interface for every new simulator
designed would demand considerable effort.

Following the Software Product Line approach, the
MPhyScaS offers a generic interface. Such an interface is
a framework to which components can be integrated. Thus,
in order to construct the simulator, the user simply connect
the desired components to the generic interface. Then, the
framework reads the XML description of each component and
assemble the simulator interface.

The framework includes facilities to: 1) visualize the sim-
ulator structure the components available; 2) configure each
component; 3) transfer the data entered by the user to the
executable simulator. This is sketched in Figure 13.

The structure of the simulator is given by an XML descrip-
tion, stored in the file simulator.xml. This file describes
which components are present in each layer of the simulator
structure and how they interact with each other. For exam-
ple, phenomena and groups in the simulator and how these
phenomena are distributed across the groups.

executable
simulator

interface

™

” R

simulator simulation
xml E data

TE—

Fig. 13. MPhyScaS interface architecture

Each component of the simulator demands some parameters
from the user. Once the interface is informed about the compo-
nents in the simulator, it requests the parameters required for
each component. The parameters definition is stored in a set of
XML files. Each component has its own description file. This
is represented in Figure 13 by the set of component .xml
files. Actually, each component will have a description file
with a different name. The name of the component’s file is
provided by the simulator.xml.

The interface then can use the GUI Generator to dynami-
cally construct and present the data forms that the components
require.

Finally, the information provided by the user is stored
in the configuration.xml file. This file is constructed
according to the definition present in the simulator.xml
and the components description files. It contains component
parameter values, geometry description, quantity activations
and so on.

A. Integration of the GUI Generator Framework

Every component in the repository shares the parameter
structure described in Sec. IV.

OLIVEIRA et al.: TOWARDS THE AUTOMATIC DEVELOPMENT OF SIMULATORS .

File Edt Visudlization Simulate Window Help

CEr e R crgmes
& Simuistion Data L Geometry S
£ 43 Geor

i U Phenomena

o View Phenomena

& Parameters of Phenomenon
& Relation Phenomenon - Geo.
¥ Methods

< Activate Quantities

¥ Phenomenan - Phenomenar:
Groups

¥ view Groups

57 View Global States

¥ Relats Group-Phenomenan
¥ Relate Group-State

o view Local States
3 view Group Tasks

e e Mame Hodl Sufi 3
o Displacement 14
E (¥oung Madule) Is
ress)
4 Diffusion 16
v (Coef, of Poison) 17
18
™1 Save detailed log 19
20
21
22
23
3 > 24
Fig. 15. Example of dynamically created screen

The interface uses the information in the simulator .xml
file to present present the simulator structure (see Figure 14).

The user can navigate through the Simulation Data (left-
hand side of Figure 14) by clicking in the desired element.
Each such an element corresponds to a screen with special
forms used to configure the simulation.

Usually, the user accesses a screen which requires some
component information. For instance, when the user wants o
to configure a phenomenon. In these situations, the inter-
face reads the simulator.xml and recover the file name
which describes such a component. Eventually, it requests the L:
”Builder” to construct the interface for that component. s

The Builder instantiates widgets for each parameter and s
returns the corresponding form to the interface. When the user
changes a parameter value, the Builder checks if the constraint
is satisfied. It rises an exception in case of invalid values. If
a valid value is given, the Builder notifies the interface that
the parameter has changed and provide the input values as
Objects. The interface stores these Objects in Hash Tables.
The parameter id is as a key for these hash tables.

The Builder is executed once for each component. The
resulting interface is maintained in memory and accessed by

1
2
3
4
5
6
7
8
9

41

users whenever they want to configure a component.

Figure 15 shows an example of a form dynamically gen-
erated through the GUI Generator Tool. This interface is
employed to configure phenomena parameters. When the user
chooses a phenomenon in the left-hand side, the Builder
constructs the parameter form for that component which is
displayed in the right-hand side area of the interface.

The XML description for the phenomenon shown in Fig-
ure 15 is presented in the listing bellow.

<?xml version="1.0" encoding="UTF-8"7>
<parameters>
<param id="0" name="E_(Young_Module)” type="NUMBER
” default="" description="">
<constraints>
<numberConstraint />
<negativeConstraint />
<zeroConstraint />
<positiveConstraint />
<realConstraint value="4"
</constraints>
</param>
<param id="1" name="v.(Coef._of_Poison)” type="
NUMBER” default="" description="">
<constraints>
<numberConstraint />
<negativeConstraint />
<zeroConstraint />
<positiveConstraint />
<realConstraint value="4"
</constraints>
</ param>
<param id="2" name="Save_detailed_log” type="CHECK
” default="FALSE” description="">
<constraints />
</param>
</parameters>

/>

/>

The Bulider is responsible for creating the XML description
of the values entered by users. In order to create the XML, the
Builder requests the parameter type, the value constraints, and
the object stored in the Hash Table. An example of parameter
values XML generated by the Builder is displayed in the next
listing.

<parameters>
<parameter id="0">
<listData>
<data value=73.000"
</listData>
</parameter>
<parameter id="1">
<listData>
<data value="—1.000"
</listData>
</parameter>
<parameter id="2">
<listData>
<data value="true”
</listData>
</parameter>
</parameters>

/>

/>

/>

VI. RELATED WORK

Several researches have demonstrated how user interfaces
can be automatically generated. Some of these researches
use declarative modeling language to create a model that
represents the interface. The tool proposed by Browne [9]
synthesizes this model into run-time code. Costa-Neto [10]

42 INTERNATIONAL JOURNAL OF MODELING AND SIMULATION FOR THE PETROLEUM INDUSTRY, VOL. 2, NO. 1, FEBRUARY 2008

proposed a system that generates multi-platform interfaces for
the web.

Nichols [11] combines the declarative model into a Rich
Human-Agent Interaction (RHAI) technique. Intelligent agents
interact to the user for modeling questions that modifies the
XML to decide the best way to present the GUL

The correctness of GUI is an important research area. In
particular, Shiffman proposed UI'Verify [12], which is able to
generate and verify the correctness of web interfaces.

Similar to other works, our approach adopts a declarative
language to define the interface model. We decided to use
the XML language to represent the interface. We provide
users with a visual environment to model the GUI. Such an
environment generates the XML model. Hence, no previous
knowledge about the MPhyScaS XML model is required to
create the interface model.

VII. CONCLUSIONS

In this paper we presented a dynamic interface framework,
called GUI Generation Tool, to support the automatic gen-
eration of different multi-physics simulators. The simulator
generator, MPhySca$, is an environment for automating the
development of simulators using reusable components. These
components might need different input data, which demands
this kind of dynamic infrastructure.

In fact, the GUI Generation Tool can be reused in other
environments. The framework gets an XML file as input and
based on the file definition creates a GUI to enter the input
data. MPhyScaS will generate the XML file for a specific
simulator based on the selected components and the used
definitionos.

ACKNOWLEDGMENT

This work was supported in part by Finep and Cenpes/Petro-
bras.

REFERENCES

[11 LENCASTRE, M. Conceptualisation of an Environment for the Develop-
ment of FEM Simulators. Tese (Doutorado em Ciéncias da Computagio)
— Universidade Federal de Pernambuco, Recife, Pernambuco, 2004.

[2] SANTOS, F. et al. Towards the automatic development of simulators for
multi-physics problems. International Journal of Modelling and Simulation
for the Petroleum Industry, v. 1, n. 1, 2007.

[3] MILI, H. et al. Reuse-Based Software Engineering: Techniques, Orga-
nization, and Controls. [S.1.]: John Wiley and Sons, 2001. ISBN 0-471-
39819-5.

[4] CLEMENTS, P. C.; NORTHROP, L. Software Product Lines: Practices
and Patterns. [S.1.]: Addison-Wesley, 2001. (SEI Series in Software Engi-
neering).

[5] GRISS, M. L. Product-line architectures. In: HEINEMAN, G. T.; COUN-
CILL, W. T. (Ed.). Component-Based Software Engineering: Putting the
Pieces Together. [S.1.]: Addison-Wesley, 2001. ISBN 0-201-70485-4.

[6] MYERS et al. Survey on user interface programming. In: Proceedings
of ACM CHI’92 Conference on Human Factors in Computing
Systems. [s.n.], 1992. (Tools and Techniques), p. 195-202. Disponivel
em: <http://www.acm.org/pubs/articles/proceedings/chi/142750/p195-
myers/p195-myers.pdf>.

[71 LIBORIO, A. et al. Interface design through knowledge-based systems:
an approach centered on explanations from problem-solving models. In:
SIKORSKI, M. (Ed.). TAMODIA. ACM, 2005. p. 127-134. ISBN 1-59593-
220-8. Disponivel em: <http://doi.acm.org/10.1145/1122935.1122961>.

[8] ROCHA, F. A. F.; SOARES, S. C. B. Configuragdo dinimica de interface
com o usudrio. 2007.

[91 BROWNE, T. et al. The MASTERMIND User Interface Generation
Project. [S.1.], 1996.

[10] NETO, M. C.; LEITE, J. Uma proposta para o desenvolvimento de
interfaces de usudrio multi-plataforma com tecnologia web. In: THC 2004
- VI Simpdésio sobre Fatores Humanos em Sistemas Computacionais. [S.1.:
s.n.], 2004. p. 235-238.

[11] NICHOLS, J.; FAULRING, A. Automatic interface generation and
future user interface tools. Workshop on The Future of User Interface
Design Tools, ACM, Pittsburg, 2005.

[12] SHIFFMAN, S.; DEGANI, A.; HEYMANN, M. Uiverify - a web-
based tool for verification and automatic generation of user interfaces.
In: Proceedings of the 8th Annual Applied Ergonomics Conference. New
Orleans, LA. [S.1.: s.n.], 2005.

